Math 55 Discussion problems 6 Apr

1. (a) Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0s.
(b) What are the initial conditions?
(c) How many bit strings of length seven contain three consecutive 0s?
2. (a) Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. [Hint: Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]
(b) What are the initial conditions for the recurrence relation in part (a)?
(c) How many ways are there to completely cover a 2×17 checkerboard with 1×2 dominoes?
3. How many permutations of the 26 letters of the English alphabet do not contain any of the strings fish, rat or bird?
4. Find the number of solutions of the equation $x_{1}+x_{2}+x_{3}+x_{4}=17$, where $x_{i}, i=1,2,3,4$, are nonnegative integers such that $x_{1} \leq 3, x_{2} \leq 4, x_{3} \leq 5$, and $x_{4} \leq 8$.
5. An integer is called squarefree if it is not divisible by the square of a positive integer greater than 1. Find the number of squarefree positive integers less than 100.
6. How many onto functions are there from a set with seven elements to one with five elements?
7. A small post office has only 4 -cent stamps, 6 -cent stamps, and 10 -cent stamps. Find a recurrence relation for the number of ways to form postage of n cents with these stamps if the order that the stamps are used matters. What are the initial conditions for this recurrence relation?
